Application Note 381 Interfacing the DS2155 and MPC8260

wWW, maxim-ic.com

Interfacing the DS2155 to the Motorola MPC8260 PowerQUICC II can be accomplished many ways, depending on the intended application. The diagram in Figure 1 shows how the DS2155 is used as the master timing source in the T1/E1 system. The oscillator is connected to the master clock (MCLK) as well as the transmit clock (TCLK). Therefore, the DS2155 sources the clock and data signal to other T1/E1 devices. The diagram in Figure 2 shows how the DS2155 is used in a loop-timed T1/E1 system. The oscillator is connected to the master clock (MCLK) while the recovered clock (RCLK) is connected to the transmit clock (TCLK). In this design, the DS2155 receive and transmit clocks are locked.

The local bus interface in these two diagrams is identical. Although there is a dedicated local bus on the MPC8260, the pins of this bus are shared with the PCI interface pins. Because of this, the choice was made to connect the DS2155 off of the MPC8260 60x bus with minimal interface circuitry. For the 32-bit address bus, two 74ALVC16373 16-bit latch devices are connected to isolate the peripherals from the 60x bus. On the 64-bit data bus, four 74ALVC16245 16-bit transceiver devices are connected to isolate the peripherals from the $60 x$ bus. Depending on the complexity and number of peripherals that are connected in this fashion to the 60x, the extra inverter and the AND gate for the data bus might not be necessary. The BCTL0 line can be configured for RD/WR* or RD*/WR, which may eliminate the need for the inverter depending on the peripherals that are connected. Also, if the peripheral address space is contiguous, the AND gate could be replaced by one of the 12 chip-select lines on the MPC8260. It is also important to note the reversing of the address and data lines of the MPC8260. The DS2155 address lines A[7-0] map to the 60x bus address lines A[24-31]. Likewise, the DS2155 data lines AD[7-0] map to the $60 x$ bus data lines $\mathrm{D}[0-7]$. In addition, if no other peripherals are connected to the 60 x bus, it is possible to reduce both the number and bit size of the latch and transceiver devices since the DS2155 is only an 8bit device.

The MPC8260 has two separate serial interface (SI1 and SI2) blocks, each of which has a time-slot assigner (TSA) that supports four time-division-multiplexed (TDM) channels. The four TDM channels for SIl are referred to as TDMa1, TDMb1, TDMc1, and TDMd1. All of the associated signals and physical pins for SI1 are described in Table 1. The four TDM channels for SI2 are referred to as TDMa2, TDMb2, TDMc2, and TDMd2 (Table 2). For flexibility, each TDM channel can have a separate transmit and receive clock. The source of both the transmit and receive clock can be from two different clock inputs. Table 3 contains all eight TDM channels and the two possible clock sources for the transmit and receive channel.

To simplify the circuits in Figure 1 and Figure 2, TDMa1 was chosen at the transmit and receive path for the DS2155 data. A system that incorporated up to eight DS2155s could be easily obtained by using all eight TDM channels from the two SI blocks. For more information about the operation of the TSA in the MPC8260, see the MPC8260 PowerQUICC II User's Manual. Chapter 14 of the user manual contains information about how to configure each TDM channel and how the data is stored in memory.

Figure 1. DS2155 MASTER TIMING SOURCE

Figure 2. DS2155 LOOP TIMED

Table 1. MPC8260 SERIAL INTERFACE 1

SIGNAL NAME	PORT PIN	DESCRIPTION
TDM_A1:L1TXD[0]	PA9	Transmit data output for the
TDM_B1:L11XD	PD13	serial interface TDM channel.
TDM_C1:L1TXD	PB15/PD28	
TDM_D1:L1TXD	PB11/PD25	
TDM_A1:L1RXD[0]	PA8	Receive data input for the serial
TDM_B1:L1RXD	PD12	interface TDM channel.
TDM_CC1:L1RXD	PB14/PD27	
TDM_D1:L1RXD	PB10/PD24	
TDM_A1:L1TSYNC/GRANT	PA7	Transmit data sync signal for
TDM_B1:L1TSYNC/GRANT	PD11	the serial interface TDM
TDM_CD1:L1TSYNC/GRANT	PB13/PD16	channel.
TDMM_1:L1TSYNC/GRANT	PB9/PD4	
TDM_A1:L1RSYNC	PA6	Receive data sync signal for the
TDM_B1:L1RSYNC	PD10	serial interface TDM channel.
TDM_C1:L1RSYNC	PB12/PD26	
TDM_DA1:L1RSYNC	PB8/PD23	
TDM_A1:L1RQ	PB17	D-channel request signal for the
TDM_B1:L1RQ	PB13	serial interface TDM channel.
TDM_C1:L1RQ	PC7	
TDM_D1:L1RQ	PC13	
TDM_A1:L1CLKO	PB16	Clock output from the serial
TDM_B1:L1CLKO	PB12	interface TDM channel.
TDM_C1:L1CLKO	PC6	
TDM_D1:L1CLKO	PC11	
SI11:L1ST1	PC9	Four output strobes that can be
SI1:L1ST2	PC8	generated by the serial
SI1:L1ST3	PC12	interface.
SI1:L1ST4	PC10	

Table 2. MPC8260 SERIAL INTERFACE 2

SIGNAL NAME	PORT PIN	DESCRIPTION
TDM_A2:L1TXD[0]	PA9	Transmit data output for the
TDM_B2:L1TXD	PD13	serial interface TDM channel.
TDM_C2:L1TXD	PB15/PD28	
TDM_D2:L1TXD	PB11/PD25	
TDM_A2:L1RXD[0]	PA8	Receive data input for the serial
TDM_B2:L1RXD	PD12	interface TDM channel.
TDM_C2:L1RXD	PB14/PD27	
TDM_D2:L1RXD	PB10/PD24	
TDM_A2:L1TSYNC/GRANT	PA7	Transmit data sync signal for
TDM_B2:L1TSYNC/GRANT	PD11	the serial interface TDM
TDM_CD:L1TSYNC/GRANT	PB133D16	channel.
TDM_D2:L1TSYYNC/GRANT	PB9/PD4	
TDM_A2:L1RSYNC	PA6	Receive data sync signal for the
TDM_B2:L1RSYNC	PD10	serial interface TDM channel.
TDM_C2:L1RSYNC	PB12/PD26	
TDM_D2:L1RSYNC	PB8/PD23	
TDM_A2:L1RQ	PB17	D-channel request signal for the
TDM_B2:L1RQ	PB13	serial interface TDM channel.
TDM_C2:L1RQ	PC7	
TDM_D2:L1RQ	PC13	
TDM_A2:L1CLKOO	PB16	Clock output from the serial
TDM_B2:L1CLKO	PB12	interface TDM channel.
TDM_C2:L1CLKO	PC6	
TDM_D2:L1CLKO	PC11	
SI2:L1ST1	PC9	Four output strobes that can be
SI2:L1ST2	PC8	generated by the serial
SI2:L1ST3	PC12	interface.
SI2:L1ST4	PC10	

Table 3. MPC8260 SERIAL INTERFACE CLOCK MATRIX

CLOCK	CLK PIN																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
TDMA1_Rx	V																		V	
TDMA1_Tx		V																		V
TDMB1_Rx			V						V											
TDMB1_Tx				V						V										
TDMC1_Rx					V								V							
TDMC1_Tx						V								V						
TDMD1_Rx							V								V					
TDMD1_Tx								V								V				
TDMA2_Rx					V								V							
TDMA2_Tx						V								V						
TDMB2_Rx															V		V			
TDMB2_Tx																V		V		
TDMC2_Rx			V														V			
TDMC2_Tx				V														V		
TDMD2_Rx	V																		V	
TDMD2_Tx		V																		V

